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Atmospheric Numerical Modeling : [Desirable Properties]

Numerical algorithms for the next generation atmospheric models should be based on the
following criteria:

Inherent local and global conservation

High-order accuracy

Computational efficiency

Geometric flexibility (complex domain boundaries, AMR capability)

Non-oscillatory advection (monotonic or positivity preservation)

High parallel efficiency (local method, petascale capability aiming O(100K) processors)

Examples of numerical methods which can address the above requirements:-
Continuous Galerkin or Spectral Element (SE) method, Multimoment Finite-Volume (FV)
Method and Discontinuous Galerkin (DG) Method etc..

The DG method (DGM) is a hybrid approach which combines nice features of SE and FV
methods
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Discontinuous Galerkin Method (DGM): An Overview

Part-I

How to solve the basic building block of a complex model – the
advection problem – with DGM?
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Flux-Form Atmospheric Equations (Conservation Laws)

A large class of atmospheric equations of motion for compressible and incompressible
flows can be written in flux (conservation) form.

Conservation laws are systems of nonlinear partial differential equations (PDEs) in flux
form and can be written:

∂

∂t
U(x, t) +

3
∑

j=1

∂

∂xj
Fj (U, x, t) = S(U),

where

x is the 3D space coordinate and time t > 0. U(x, t) is the state vector represents
mass, momentum and energy etc.
Fj (U) are given flux vectors and include diffusive and convective effects
S(U) is the source term

Linear transport problem is a simple example of conservation law:

∂ρ

∂t
+∇ · (ρV) = 0, or ρt + div(ρV) = 0
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Discontinuous Galerkin Method (DGM) in 1D

1D scalar conservation law:

∂U

∂t
+

∂F (U)

∂x
= 0 in Ω× (0,T ),

U0(x) = U(x , t = 0), ∀x ∈ Ω

E.g., F (U) = c U (Linear advection), F (U) = U2/2 (Burgers’ Equation)

The domain Ω (periodic) is partitioned into Nx non-overlapping elements (intervals)
Ij = [xj−1/2, xj+1/2], j = 1, . . . ,Nx , and ∆xj = (xj+1/2 − xj−1/2)

j−1

x x x xj+1/2j−1/2 j+3/2j−3/2

j+1IjII
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DGM-1D: Weak Formulation

A weak formulation of the problem for the approximate solution Uh is obtained by multiplying
the PDE by a test function ϕh(x) and integrating over an element Ij :

∫

Ij

[

∂Uh

∂t
+

∂F (Uh)

∂x

]

ϕh(x)dx = 0, Uh, ϕh ∈ Vh

Integrating the second term by parts =⇒
∫

Ij

∂Uh(x , t)

∂t
ϕh(x)dx −

∫

Ij

F (Uh(x , t))
∂ϕh

∂x
dx +

F (Uh(xj+1/2, t))ϕh(x
−

j+1/2
)− F (Uh(xj−1/2, t))ϕh(x

+
j−1/2

) = 0,

where ϕ(x−) and ϕ(x+) denote ”left” and ”right” limits.

R

x j−1/2 x j+1/2

I j

+ +_ (    )(    )(    ) _(    )

L L R
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DGM-1D: Flux term (“Gluing” the discontinuous element edges)

Ω x

+

j+1/2j Ω j+1 

F(u

F(u )

−)

Flux function F (Uh) is discontinuous at the interfaces xj±1/2

F (Uh) is replaced by a numerical flux function F̂ (Uh), dependent on the left and right
limits of the discontinuous function U. At the interface xj+1/2,

F̂ (Uh)j+1/2(t) = F̂ (Uh(x
−

j+1/2
, t),Uh(x

+
j+1/2

, t))

Typical flux formulae (Approx. Reimann Solvers): Gudunov, Lax-Friedrichs, Roe, HLLC,
etc.

Lax-Friedrichs nurmerical flux formula:-

F̂ (Uh) =
1

2

[

(F (U−

h ) + F (U+
h )) − α(U+

h − U−

h )
]

.
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DGM-1D: Space Discretization (Evaluation of the Integrals)

Ω

x

Ωj+1 Ωj

∆ ∆x x∆ j j+1

-1 +10

Q

j-1

j-1

Map every element Ωj onto the reference element [−1,+1] by introducing a local
coordinate ξ ∈ [−1,+1] s.t.,

ξ =
2 (x − xj)

∆xj
, xj = (xj−1/2 + xj+1/2)/2 ⇒ ∂

∂x
=

2

∆xj

∂

∂ξ
.

Use a high-order Gaussian quadrature such as the Gauss-Legendre (GL) or
Gauss-Lobatto-Legendre (GLL) quadrature rule. The GLL qudrature is ‘exact’ for
polynomials of degree up to 2N − 1.

∫ 1

−1
f (ξ)dξ ≈

N
∑

n=0

wnf (ξn); for GLL, ξn ⇐ (1− ξ2)P′
ℓ(ξ) = 0
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DGM-1D: Representation of Test function & Approximate Solution

−1 −0.5 0 0.5 1
−1
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x
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x)

The model basis set for the Pk DG method consists of Legendre polynomials,
B = {Pℓ(ξ), ℓ = 0, 1, . . . , k}.
Test function ϕh(x) and approximate solution Uh(x) belong to B

Uh(ξ, t) =
k

∑

ℓ=0

Uℓ
h (t)Pℓ(ξ) for − 1 ≤ ξ ≤ 1, where

Uℓ
h(t) =

2ℓ+ 1

2

∫ 1

−1
Uh(ξ, t)Pℓ(ξ) dξ ℓ = 0, 1, . . . , k.

∫ 1

−1
Pm(x)Pn(x)dx =

2

2m + 1
δm,n ⇐ Orthogonality

Uℓ
h(t) is the degrees of freedom (dof) evolves w.r.t time.
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DGM-1D: Modal Basis Set for a “P2” Method

For the P2 method, B = {P0,P1,P2} = {1, ξ, (3ξ2 − 1)/2}.
Approximate solution:

Uh(ξ, t) = U0
h (t) + U1

h (t) ξ + U2
h (t) [3ξ

2 − 1]

The degrees of freedom to evolve in t are:

U0
h (t) =

1

2

∫ 1

−1
Uh(ξ, t)dξ ⇐ Average

U1
h (t) =

3

2

∫ 1

−1
Uh(ξ, t) ξdξ

U2
h (t) =

5

2

∫ 1

−1
Uh(ξ, t) [3ξ

2 − 1] dξ

−1 −0.5 0 0.5 1
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DGM-1D: Orthogonal Basis Set (Modal Vs Nodal)

Modal basis functions Nodal basis functions
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The nodal basis set B is constructed using Lagrange-Legendre polynomials hi (ξ) with
roots at Gauss-Lobatto quadrature points (physical space).

Uj (ξ) =
k

∑

j=0

Uj hj (ξ) for − 1 ≤ ξ ≤ 1,

hj (ξ) =
(ξ2 − 1)P′

k (ξ)

k(k + 1)Pk(ξj ) (ξ − ξj )
,

∫ 1

−1
hi (ξ)hj (ξ) = wi δij .

Nodal version was shown to be more computationally efficient than the Modal version
(see, Levy, Nair & Tufo, Comput. & Geos. 2007)

Modal version is more “friendly” with monotic limiting
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DG-1D: Semi-Discretized Form

Finally, the weak formulation leads the PDE to the time dependent ODE
∫

Ij

[

∂Uh

∂t
+

∂F (Uh)

∂x

]

ϕh(x)dx = 0 ⇒ d

dt
Uℓ
h (t) = L(Uh) in (0,T ) ×Ω

Example: For the P1 case on an element Ij , we need to solve:

d

dt
U0
h (t) =

−1

∆xj
[F (ξ = 1, t)− F (ξ = −1, t)]

d

dt
U1
h (t) =

−3

∆xj

(

[F (ξ = 1, t) + F (ξ = −1, t)] −
∫ 1

−1
Uh(ξ, t) dξ

)

Solve the ODEs for the modes at new time level Uℓ
h(t +∆t) For the P1 case,

Uh(ξ, t +∆t) = U0
h (t +∆t) + U1

h (ξ, t +∆t) ξ

j−1/2

DG

x x

FV

j−1/2 j+1/2j+1/2 j+3/2J−3/2 I Ij−1 I Ij+1jj
x xxx
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Time Integration

For the ODE of the form,

d

dt
U(t) = L(U) in (0,T )× Ω

Strong Stability Preserving third-order Runge-Kutta (SSP-RK) scheme (Gottlieb et al.,
SIAM Review, 2001)

U(1) = Un +∆tL(Un)

U(2) =
3

4
Un +

1

4
U(1) +

1

4
∆tL(U(1))

Un+1 =
1

3
Un +

2

3
U(2) +

2

3
∆tL(U(2)).

CFL for the DG scheme is estimated to be 1/(2k + 1), where k is the degree of the
polynomial (Cockburn and Shu, 1989).

Remedy: Use low-order polynomials (k ≤ 3) or efficient semi-implicit / implicit time
integrators or high-order multi-stage R-K method.
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DGM-1D: Results (Simple Linear Advection Test)
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Discontinuous Galerkin (DG) Methods in 2D Cartesian Geometry

2D Scalar conservation law:

∂U

∂t
+∇ · F(U) = S(U), in (0,T )×D; ∀ (x1, x2) ∈ D,

where U = U(x1, x2, t), ∇ ≡ (∂/∂x1, ∂/∂x2), F = (F ,G) is the flux function, and S is the
source term.

Ω

Ω

Ω Ω

Ω

i,j i+1,ji-1,j

i,j+1

i,j-1

∪Domain D = Ω i,j

Element

The domain D is partitioned into
non-overlapping elements Ωij

Element edges are discontinuous

Problem is locally solved on each
element Ωij
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DG-2D Spatial Discretization for an Element Ωe in D

Approximate solution Uh belongs to a vector space Vh of polynomials PN (Ωe ).

The Galerkin formulation: Multiplication of the basic equation by a test function ϕh ∈ Vh

and integration over an element Ωe with boundary Γe ,

∫

Ωe

[

∂Uh

∂t
+∇ · F(Uh)− S(Uh)

]

ϕhdΩ = 0

Weak Galerkin formulation : Integration by parts (Green’s theorem) yields:

∂

∂t

∫

Ωe

Uh ϕh dΩ −
∫

Ωe

F(Uh) · ∇ϕh dΩ +

∫

Γe

F(Uh) · ~nϕh dΓ =

∫

Ωe

S(Uh)ϕhdΩ

Γ

Ω
n
→

e

e

Element

Orthogonal polynomials (basis functions) are
employed for approximating Uh and ϕh on Ωe .

Surface and line integrals are evaluated with
high-order Gaussian quadrature rule

Exact Integration: The flux (line) integral
should be an order higher than the surface
integral (Cockburn & Shu, 1989).
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DG-2D: High-Order Nodal Spatial Discretization

The nodal basis set is constructed using a tensor-product of Lagrange polynomials hi (ξ),
with roots at Gauss-Lobatto-Legendre (GLL) or Gauss-Legendre (GL) quadrature points
{ξi}.

[hi (ξ)]GLL =
(ξ2 − 1)P′

N(ξ)

N(N + 1)PN(ξi ) (ξ − ξi )
;

∫ 1

−1
hi (ξ)hj (ξ) ≃ wi δij .

PN(ξ) is the Nth degree Legendre polynomial; and wi are Gauss quadrature weights

(a) (b) (c)

The approximate solution Uh and test function are represented in terms of nodal basis set.

Uij (ξ, η) =
N
∑

i=0

N
∑

j=0

Uij hi (ξ) hj (η) for − 1 ≤ ξ, η ≤ 1,
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The DG, SE & FV Methods

C

DG SE

FV
Boundary Discontinuity   Continuous 0

For DGM degrees of freedom (d.o.f) to evolve per element is N2, where N is the order of
accuracy.

For FV method the d.o.f is 1 (cell-average), irrespective of order of accuracy.

DGM is based on conservation laws but exploits the spectral expansion of SE method and
treats the element boundaries using FV “tricks.”
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Monotonic Limiter for DG transport

Importance:

In atmospheric models, mixing ratios of the advecting chemical species and
humidity should be non-negative and free from spurious oscillation.
The model should avoid creating unphysical negative mass

Challenges:

Godunov theorem (1959): “Monotone scheme can be at most first-order accurate”
There is a “conflict of interest” between the high-order methods and monotonicity
preservation!
In principle, a limiter should eliminate spurious oscillation and preserve high-order
nature of the solution to a maximum possible extent

Existing Limiters for DGM:

Minmod limiter (Cockburm & Shu, 1989): Based on van Leer’s slope limiting, but
too diffusive
Limiters based on WENO or H-WENO (Qui & Shu 2005), Expensive and no
positivity preservation
New bound-preserving limiter: Positivity-preserving and local (Zhang & Shu, 2010)
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Local Bound-Preserving Limiter for DGM

If the global maximum M and minimum m values of the solution ρi,j (x , y) is known, then
the limited solution ρ̃i,j(x , y):

ρ̃i,j (x , y) = θ̂ ρi,j (x , y) + (1 − θ̂) ūi,j , θ̂ = min{| M − ūi,j

Mi,j − ūi,j
|, | m

∗ − ūi,j

m∗
i,j − ūi,j

|, 1},

ūi,j is the average solution in the element Ωi,j , Mi,j = max(x,y)∈Ωi,j
ρi,j(x , y) and

m∗
i,j = min(x,y)∈Ωi,j

ρi,j (x , y).

θ̂ ∈ [0, 1]. The positivity preserving option is a special case of BP filter, and can be
achieved my setting m∗ = 0.

This limiter is conservative and local to the element (Zhang & Shu, JCP, 2010)
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DG Advection on 2D Cartesian Grid (Solid-Body Rotation)

A DG P2 (third-order) Model version with 6 DOFs on 3× 3 G-L grid (Zhang & Nair,
MWR, 2012)
Solid-body rotation (Leveque, 2002) , 80× 80 elements.

a) P2-DG

b) P2-DG + BP

c) P2-DG + H-WENO + BP
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DG Advection on 2D Cartesian Grid

HWENO uses 3× 3 cells and completely removes oscillation, but more diffusive.
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DG-2D: Scaling Results (Levy, Nair & Tufo, 2007)

Problem: Advection of a Gaussin-hill, 80 × 80 elements with 6× 6 GLL grid

Strong scaling is measured by increase the number processes running while keeping the
problem size constant

Weak scaling is measured by scaling the problem along with the number of processors, so
that work per process is constant
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Extending DG Methods to Spherical Geometry: Various Grid Options

DG method can be potentially used on various spherical mesh with triangular or
quadrilateral (or both) elements

Figs source David Hall
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Cubed-Sphere: Central Equiangular (Gnomonic) Projection

The sphere is decomposed into 6 identical regions, and free of polar singularities

(Sadourny, MWR, 1972).

Equiangular projection using central angles (x1, x2).

Non-orthogonal grid lines and discontinuous edges
All the grid lines are great-circle arcs
Quasi-uniform rectangular mesh, well suited for the element-based methods such as
DG or SE methods (CAM-HOMME)
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Non-Orhogonal Cubed-Sphere Grid System

Metric term (Jacobian) of [Cubed-Sphere ⇋ Sphere] Transform on the cubed-sphere:
√
G

Central angles (x1, x2) ∈ [−π/4, π/4], (∆x1 = ∆x2) are the independent variables.
Transport equation (Nair et al. MWR, 2005):

∂

∂t
(
√
G h) +

∂

∂x1
(
√
G u1h) +

∂

∂x2
(
√
G u2h) = 0

Computational domain is the surface of cube [−π/4,+π/4]3

ΩΩ
S

/4π π /4− +
x

e e
x

1

2

Physical Domain Computational Domain 

+π /4

!● ■

■

■

■

●

● ●

z

 4 F 2 F 3F 1

F 6

F 5
(Top)

F 1

(Bottom)

x

yF
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Advection: Deformational Flow (Moving Vortices on the Sphere)

Initial field and DG solution after 12 days. Max error is O(10−5)

A Smooth Deformational Flow Test [Nair & Jablonowski (MWR, 2008)]

The vortices are located at diametrically opposite sides of the sphere, the vortices deform
as they move along a prescribed trajectory.

Analytical solution is known and the trajectory is chosen to be a great circle along the NE
direction (α = π/4).
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DGM Advection: Extreme deformation

Deformational flow: Fine filament preservation (Zhang & Nair, MWR, 2012)

Modal P2-DG with 100× 100 × 6 cells, ∆t = 600s, 60-day simulation
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DGM Advection: Deformational flow (Slotted-Cylinder)

Deformational flow (non-smooth deformation) (Nair & Laurtitzen, JCP, 2010)

Modal P2-DG with 45× 45× 6 cells, ∆t = 0.00125s, T = 5.
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DG on Yin-Yang Overset Spherical Grid [Kageyama and Sato (2004)]

It avoids the pole problem of the RLL grid, and there are no singular points.

The grid spacing is quasi-uniform with a largest to smallest grid-length ratio
√
2

Each grid component is orthogonal, producing a simple analytical form for PDEs.

Overlap regions provide two set of solution.

Numerical schemes require special treatment for conservation
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DG on Yin-Yang Grid: Advection [Hall & Nair, MWR, 2012]

Sphere S = Y ∪ Y ′ where Y : Yin region, and Y ′: Yang region. Y ⊥ Y ′

Y is a rectangular region in lat/lon (θ, λ)-space, λ ∈ [−3π/2− δ, 3π/2 + δ],
θ ∈ [−π/4− δ, π/4 + δ] where δ is the overlap region.

There are total 6× N2
e elements (DOF) for the DG spatial discretization.

Yin-Yang Grid 
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DG Advection on YY Grid: Cosine-Bell Test (Time-traces of ℓ1, ℓ2, ℓ∞ errors)

Cosine bell transport results with Ne = 4 and Ng = 8 nodes per element (approximately
3.2◦ resolution, and 6144 DOF).

Figs from Hall & Nair, MWR, 2012

Note: Exact mass conservation can be enforced by additional integral constraints
(Baba et al. (2010), Peng et al. (2006))
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DGM Convergence: Gaussian Advection and Spectral Convergence

Advection of a Gaussian Profile (Levy et al. 2007; Hall & Nair, MWR, 2012)
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Beyond Advection: DG-3D Model Vs. CAM Spectral Models

DG-3D Hydrostatic Dycore (Nair et al. Comput. & Fluids, 2009)

JW-Baroclinic Instability Test, Day 8 Ps (≈ 1◦ resolution)

The DG Solution is smooth and free from “spectral ringing”.
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Vertical Aspects of 3D Advection: An Overview

Part-II

The quasi-Lagrangian coordinates for advection problems
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Hydrostatic Equations in Flux Form: Curvilinear (x1, x2, η) coordinates

∂u1

∂t
+∇c · E1 + η̇

∂u1

∂η
=

√
Gu2 (f + ζ)− R T

∂

∂x1
(ln p)

∂u2

∂t
+∇c · E2 + η̇

∂u2

∂η
= −

√
Gu1 (f + ζ)− R T

∂

∂x2
(ln p)

∂

∂t
(m) +∇c ·

(

Ui m
)

+
∂(mη̇)

∂η
= 0

∂

∂t
(mΘ) +∇c ·

(

Ui Θm
)

+
∂(mη̇Θ)

∂η
= 0

∂

∂t
(mq) +∇c ·

(

Ui q m
)

+
∂(mη̇ q)

∂η
= 0

m ≡
√
G

∂p

∂η
,∇c ≡

(

∂

∂x1
,

∂

∂x2

)

, η = η(p, ps ),G = det(Gij ),
∂Φ

∂η
= −R T

p

∂p

∂η
.

Where m is the mass function, Θ is the potential temperature and q is the moisture variable.
Ui = (u1, u2), E1 = (E , 0), E2 = (0,E); E = Φ+ 1

2

(

u1u1 + u2u2
)

is the energy term. Φ is the
geopotential, ζ is the relative vorticity, and f is the Coriolis term.

[Ref: HOMME/DG, Nair et al. Comput. & Fluids 2009]
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Vertical (quasi) Lagrangian Coordinates (Starr, J. Meterol. 1945)

A “vanishing trick” for vertical advection terms!

Terrain-following Eulerian surfaces are treated as material surfaces (η̇ = 0).

Simplified hydrostatic equations with no “vertical terms”

The resulting Lagrangian surfaces are free to move up or down direction.

top

Topography

δp

k 

k

p
s

p
Vertically Moving Lagrangian Surfaces

Φs

−1/2

+1/2

k
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The Remapping of Lagrangian Variables

Vertically moving Lagrangian Surfaces

Over time, Lagrangian surfaces deform and must be remapped.

The velocity fields (u1, u2), and total energy (ΓE ) are remapped onto the reference
coordinates.

E

E

∆P
∆P

t

= Pressure thicknessP∆ Lagrangian Surface

Terrain−following Lagrangian control−volume coordinates

L2

L1

1

2

t +∆t

Topography

Remapping: Lauritzen & Nair, MWR, 2008; Norman & Nair, MWR, 2008)
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Remapping (Rezoning or Re-gridding) on a 1D Grid

x x xx j-1/2 j+1/2

!!

" "
j+1/2j-1/2

ρ
j

−

x∆x ∆ j
"

j

ρ
j

−"

L

L'

R

R'

1D Remapping

Remapping: Interpolation from a source grid to target grid with constraints (conservation,
monotonicity, positivity-preservation etc.).

Application: Conservative semi-Lagrangian methods (e.g. CSLAM); Grid-to-grid data
transfer for pre- or post-processing (GeCore).
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Remapping (Rezoning or Re-gridding) on a 1D Grid

! ! j+1/2j-1/2
!∆ j

ρ
j

−

ρ

ρ

−

−
j-1

j+1

1D Recostruction

Reconstruction: Fit a piecewise polynomial ρj (x) for every cell ∆xj = xj+1/2 − xj−1/2,
using the known cell-average values ρ̄j from the neighboring cells.

The subgrid-scale distribution ρj (x) must satisfy the conservation constraint:

ρ̄j =
1

∆xj

∫ xj+1/2

xj−1/2

ρj (x)dx , ⇒ Mass = ρ̄j ∆xj

ρj (x) may be further modified to be monotonic (E.g: PLM, PPM, PCM, PHM)
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Remapping 1D Grid

x x x
x j-1/2 j+1/2

!!

" "
j+1/2j-1/2

ρ
j

−

x�x � j
"

j

ρ
j

−"

L

L'

R

R'

1D Remapping

Mass in the target cell (∆x∗j = x∗
j+1/2

− x∗
j−1/2

) can be expressed as the difference of

“Accumulated Mass” (Am):

ρ̄∗j ∆x∗j = Am(RR
′)−Am(LL

′) =⇒ ρ̄∗j =
1

∆x∗j
[Am(RR

′)−Am(LL
′)]

where
Am(RR′) =

∫ x∗j+1/2

xRef

ρ(x)dx =

j−1
∑

k=1

ρ̄k ∆xk +

∫ x∗j+1/2

xj−3/2

ρj−1(x)dx
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Vertical Advection with Lagrangian η-Cooridate

top
η

η
s = 1

η L
k−1/2

k+1/2

E

ψ (η )
k

L

η

(η )ψ
k

η
k+1/2

L

η E

k−1/2

E

Reference (initial) grid η = η(P,Ps ) ∈ [ηtop , 1]

Source grid = Lagrangian ηLk

Target grid = Eulerian ηEk ;
∑

∆ηEk =
∑

∆ηLk

Lagrangian ηLk can be computed from the
predicted “pressure thickness” ∆P (CAM-FV)

Remapping is performed at every advective ∆t

Every 1D vertical trajectory information can be
“recycled” for all tracers
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3D Transport ( CAM-SE): SE horizontal + vertical remapping

Day 0 Day 5

Day 10 Day 15

CAM-SE (1◦): JW-Test divergent flow field. SE horizontal transport is quasi-monotonic

∆ta = 4× 90 s, vertical remapping by PCM (Zerroukat, 2005) for advection.

Figure courtesy: Christoph Erath
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Summary & Conclusions :

The DG method with moderate order (third or fourth) is an excellent choice for transport

problems as applied in atmospheric sciences. DGM addresses:

1 High-order accuracy
2 Geometric flexibility
3 Positivity-preserving advection
4 High parallel efficiency
5 Local and global conservation

In comparison with finite-volume and finite-difference implementations of the Yin-Yang
grid, the DG approach is considerably simpler as the overset interpolation is local,
requiring information from the interior of a single element.

In general, modified YY-P and YY meshes exhibited similar performance on most tests,
while the YY-P mesh performed better on cases with strictly zonal flow.

DG method is an ideal candidate for the new generation petascale-capable dynamical
cores.

The “moving” vertical Lagrangian (evolve and remap approach) method provides an
efficient way for 3D conservative multi-tracer transport.
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THANK YOU!
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